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Key Words Abstract
Neural networks This is the third communication on the use of neural network techniques to
Sleep EEG classify sleep stages. In our first communication we presented the algorithms
Automated sleep-stage scoring and the selection of the feature space and its reduction by using evolutionary

and genetic procedures. In our second communication we trained the evolu-
tionary optimized networks on the basis of multiple subject data in context
with some smoothing algorithms in analogy of Rechtschaffen and Kales (RK).
In this third communication we could demonstrate that the robustness con-
cerning individual specific features of automatically generated sleep profiles
could be reasonably improved by an additional modification of the procedure
used by SASCIA (Sleep Analysis System to Challenge Innovative Artificial
Networks). The outputs of nine different  networks that were created by the
data of 9 different subjects were used simultaneously for classification. The
medians of the values obtained in each output measure were selected for the
allocation to a sleep stage. The fitness criteria of 16 automatically generated
sleep profiles showed reasonable concordance with the expert profile. Even
though in single cases the concordance between conventional RK classifica-
tions and automatically generated profiles  were a few percentages lower, the
average correct classification of the 12 classified subjects improved substan-
tially, thus proving that the classifier is more robust against individuum-spe-
cific variability. Despite the fact that the expert generally employs three chan-
nels (EEG, EMG and EOG), at least to build up sleep profiles, the SASCIA
system was able to produce profiles on the basis of only one EEG channel with
80% concordance and a correlation coefficient of 0.86. The feature selections
were performed by genetic algorithms and the topologies of the networks were
optimized by evolutionary algorithms, This algorithm will now be used for
larger sample forward classification.



Introduction Methods

This paper is based on the neural network approaches
communicated by Baumgart-Schmitt et al. [l-3]. The
automatic analysis of sleep EEG is a nonlinear classifica-
tion that is solved by neuronal networks. The sleep staging
is rcprescnted  by seven classes (stages wake, 1, 2, 3. 4,
REM and movement).  It is well known that neural net-
ivorks can be trained and that they have the ability to gen-
cralizc. comparable to real brain networks. Networks
store their knowledge in a distributed mode and it is
impossible to determine whether or not their knowledge is
sufficient to make the right decision for all unknown
cases. Networks can be optimized by evolutionary algo-
rithms but the probability for a wrongly represented sub-
space and for a typical set of classification errors remains
unequal to zero. One way to cope with it consists in using

a
a population of networks instead of one network adapted
with much effort. The members of that population will
form more or less different conclusions. Because a deci-
sion is necessary, the knowledge of all networks has to be
aggregated. Several operators were tested. As the most
important result we proposed to use the median of the
output values of all 9 networks. This averaging operation
resulted in a robust classifier that, in connection with con-
text rules, generated sleep profiles that were in reasonable
agreement with the expert profiles. The developed system
SASCIA (Sleep Analysis System to Challenge Innovative
Artificial Networks) so far used only one EEG channel to
extract features. Evolutionary and genetic approaches
were applied to optimize the topology and learning pa-
rameters of the networks and to select the features from a
high-dimensional feature space.

WC decided to take only one single EEG channel for
the analysis believing that both the rapid eye movements

0 (REM) and the muscle activity as received by EMG are
only epiphenomena of brain processes and that the EEG
itself should carry all necessary information for the classi-
fication.

In two prior publications [2, 31, the feature extraction
and the classification procedure were published in detail,
including some smoothing rules in analogy to Rechtschaf-
fen und Kales (RK) [4]. The main purpose of this third
commLIiiication  is to test the system for robustness using
more than one classification rule simultaneously.

The data wcrc collected In a coniprchcnslvc in\ estigation at the
sleep laboratory ofthe Free L’ni\erslty ol‘Rcrlin. The sleep polysom-
nographics of 16 nights. dcri\cd from Y healthy subjects. bvcrc ana-
Iyzcd. Four nights of 2 subjects and 3 nights for I subject were
included. That means the results of I6 nights can be compared.

‘1%~ recording was done u ith Nihon Kohden EEC equipment. The
analog signal was con\crted into digital signals with a l2-bit A-D con-
verter. The recording using a tlmc constant ofO.3 s and a low-pass filter
of the EEC machine with about 6 dB/octave at 30 Hz. The sampling
Irate was 256 values per second of which every second point was taken
for further analysis. From the 32 channels the central channel C4-A2
was selected. The conventionally classified profiles according to RK
based on polysomnographic recordings were available for all nights.
There was no artifact detection and no rejection of any segment.

The system SASCIA was used to teach and optimize neural nct-
works and to test the abilities of the networks to generalize. The sys-
tem consists of four main parts: (1) the feature extraction and selec-
tion; (2) the neural network component; (3) the evolutionary compo-
nent, and (4) the genetic component.

The interaction of the main parts can be described in terms of
hierarchical optimization procedure. According to the information
flow chart shown in figure I. the basic procedure is connected with
the estimation of the weights of the networks. The evolution takes
place at the next level. The topology and learning parameters of the
networks are adapted to the task. The genetic algorithms are respon-
sible for the optimal feature selection at the top level of the hierarchi-
cal optimization. The core of the system consists of neural networks
that should separate the different sleep stages on the basis of features
extracted from only one EEC channel. The features are taken by the
input units of the supervised feed-forward networks and the excita-
tions of the output units indicate the membership of the epochs to the
sleep stages.

Gcrrrric j 4lgorithm.r atld t/w Fcwtrcrc Spw
The features based on the frequency range Lucre extracted for each

epoch with the length of IO s. Segments with the length of I s were
multiplied by the Hanning \vindow. The transformation of the time
scrics in the frequency range was performed by the fast Fourier trans-
Ibrmation.

The windowing technique was used to make the results more
insensitive to shifts of the boundaries of the epochs. The segments
wcrc ovcl-lapped and avcragcd to reduce the variance of the power
spcctr~~m. Origtnally I IX features \vcrc extracted [2]. To reduce the
I‘caturcs space, a subset out of 3 I prc-selected features was chosen b!
genetic algorithms [3]. This means that the numhcr of input unit? was
variable. while the number of output units was fixed (7 classes).

The following genetic procedures were applied [2. 31: (1) recombi-
nation; (2) crossing-over; (3) mutation. and, (4) inversion.

ll’P/l/‘t//  ~l’?tl~‘O~ii.S  Of?d  El’f~/~//i~~~ii~~j’.St~Ot~‘~/CS

The number of output units is conncctcd with the number 01
sleep stages and the number of input units should fit the number 01
I’caturcs that ~CI-c  selected b) the gcnctic algorithms (in our cast 3 I)



Genetic algorithms

t 1

Evolutionary algorithms
1

f 1

Supervised learning procedure (error back p )

t 1

Features Neuronal networks

Fig. 1. Main components of SASCIA and
information flow between them.

The optional number of hidden units that support the adaptation of
the networks to the learning set in an optimal way is unknown. The
lcaming is additionally influenced by different parameters: the learn-
ing rate, the momentum and the limits in the number of iterations.
The evolutionary strategies are used to generate populations of net-
works with a variable number of hidden units in the first and second
hidden layers and different values of the three learning parameters.
The networks with the best reclassification results are regarded as
members of the population with the greatest fitness. All members
with a suitable fitness survive and give the opportunity to the next
generation of networks to inherit their genes (parameters).

The knowledge to automatically generate sleep profiles is based
on two sources: the manual scoring by an expert using the RK [4]
rules and the RK rules themselves. Since RK apply context rules, we
also developed context rules for our final (secondary) staging. That
means the time horizon is restricted to one epoch in the numerical
classification by neural networks. The following application of the
rules uses a flexible time horizon. One example of the used context
rules can be noted by

(rem. rem, rem ) e ( rem, stage 2, rem)

with rem - sleep stage REM and stage 2 as sleep stage 2 transform
triple of epochs. The sleep stage 2 epoch should be transformed to
rem if the frame is formed by rem. The time horizon is restricted to
length of three epochs. The next example

[stage 2. (stage 2)... , stage 21 = [stage 2, (stage I)... , stage 21

with ()... as repetition operator and stage 1 as sleep stage 1 is called
‘far range rule’ because the time horizon is icidened and context-
sensitive.

The complete set of rules is dcscribcd bg Haumgart-Schmitt et
al. [3].

Neural Nct\\ork Techniques to Analyzc
Sleep EECi Data

Results

The results of 16 automatically analyzed nights with
the relevant sleep profiles were compared. The data of the
16 nights are based on 9 subjects. Four nights of 2 sub-
jects, 2 nights of 1 subject and 1 night of 6 subjects were
included in this study. The codes of the investigated
nights are contained in the following set C with

C = (kl0810, kl0821, k10832, k10843, k40410, k40421, k40433,
k40442. k40310, k40322, kl1510, k31132, k31510, k31231,
k20923. k20831).

The first three digits represent the codes of the subject,
the following digits correspond to the number of the
nights and the last digit has been joined with an experi-
mental variation. That means for example that the code
k108 10 is connected with the first night of subject 108
and by the code k40433 the 3rd night of subject 404 is
indicated.

The used nets were trained by means of the data of the
9 nights:

(10810 31510 40410 40310 31132 31231 20831 I1510 20923).

The best fitting net of each night was selected. The
resulting 9 nets were simultaneously used to classify 1
night. The maximum output of each net indicated the
individual decision. The final decision for one class was
supported by the median overall maximum outputs of the
networks. The median was preferred because no normal
distribution could be assumed and the median is not sen-
sitive to outlier values. As a precondition to the statistical
operation of median the sleep stages had to be ordered
according to the code MOVEMENT = 0, WAKE = 1,



Table 1. Mean percentages of ql and q2 for all correctly classified
epochs of the corresponding nights

Night qls ql 0 s2

k10810 83.7 79.0 14.4 68.9
k10821 72.4 65.8 64.0 62.1
k10832 79.6 73.3 71.4 67.1
k10843 66.9 63.0 58.3 60.4
k31510 68.1 65.6 , 63.3 63.1
k40410 75.2 72.2 62.0 66.0
k4042 1 19.6 13.5 66.9 63.3
k40433 75.6 71.1 69.6 64.1
k40442 16.2 70.9 71.6 66.7
k40310 71.2 71.2 62.7 51.9
k40322 77.0 73.1 64.7 59.9
k31132 74.1 68.1 57.6 57.0
k31231 80.9 17.3 60.4 59.0
k20831 58.9 44.2 53.4 46.4
k11510 80.2 77.1 69.1 70.7

el 20923 ean 84.4 75.6 78.6 70.2 78.7 65.5 73.6 62.9
Standard dev. 6.3 8.1 6.4 6.2
Median 76.6 71.7 64.3 63.5
Semiquartile dist. 2.4 3.5 4.5 3.5

k10810 83.7 79.3 74.4 71.4
k10821 12.4 75.0 64.0 66.3
k10832 79.6 76.5 71.4 70.0
k10843 66.9 10.6 58.3 61.6
k31510 68.1 66.9 63.3 62.0
k40410 75.2 72.5 62.0 66.0
k4042 1 19.6 76.4 66.9 64.0
k40433 15.6 78.4 69.6 69.3
k40442 16.2 75.5 71.6 69.4
k40310 11.2 75.4 62.1 64.3
k40322 77.0 76.2 64.1 66.4
k31132 74.1 83.0 57.6 69.6
k31231 80.9 11.1 60.4 51.9
k20831 58.9 77.0 53.4 60.4
k11510 80.2 77.4 69.1 71.6
k20923 84.4 83.8 18.7 75.1
Mean 75.6 76.3 65.5 66.5
Standard dev. 6.3 2.25 6.4 1.85
Median 76.6 76.4 64.3 66.3
Semiquartile dist. 2.8 1.2 4.5 3.1

The values are averaged on all epochs. To classify the epochs the The values are averaged on all epochs. The results were gathered
median of the net outputs of 9 networks were used. The results qls with the application of context rules. The values of qls and q2s are
and q2s were gathered with the application of context rules (EMG connected with median of the net outputs of 9 networks. The results
only used for checking BEM onset) and the results ql and q2 were qlb and q2b were received by means of the best nets of another sub-
received without context rules. The means, standard deviations, ject compared to the nights. The means, standard deviations, me-
medians and the semiquartile distances of all criteria are shown at dians and the semiquartile distances of all criteria are shown at the
the bottom of the table. bottom of the table.

BEM = 2, Sl = 3, S2 = 4, S3 = 5, S4 = 6. That proposal
should be justified by the similarities between the differ-
ent sleep stages. Cluster analysis in the feature space sup-

@
or-ted this ordering. Whether or not the assumed mecha-
isms behind the sleep stages are in agreement with this

ordering is an open question.
The values of the applied criteria are being shown in

tables and graphs. With r(i) number of epochs correctly as-
signed to the i-th class, s(i) number of the epochs of the i-th
class, and k number of classes (sleep stages), two criteria

i = k i = k

ql = 100%. zr(i) / es(i) and
i=l i-l

(1)

i = k r(i)q2= loo%.; ,F --’
I-I

(2)

were used to evaluate the results. The values of q 1 and q2
are identical if the epochs are equally distributed to the k
different sleep stages. The distribution of the objects

Table 2. Mean percentages of ql and q2 for all correctly classi-
tied epochs of the corresponding nights

Night qls qlb @ q2b

(epochs) is extremely different in the classitication of the
sleep stages on the basis of the EEG. Therefore both crite-
ria lead to a different evaluation of the fitness. The aim ql
prefers the strongly represented classes and q2 delivers a
value that is equally influenced by the weakly represented
classes.

Mean percentages of q 1 and q2 for all correctly classified
epochs of the corresponding nights are summarized in
table 2. The values are averaged on all epochs. The results
measured by qls and q2s were gathered with the applica-
tion of context rules (EMG only used for checking BEM
onset before the stage 2 epoch). The results measured by ql
and q2 were received without context rules. The means,
standard deviations, medians and the semiquartile dis-
tances of all criteria are shown at the bottom of tables 1 and
2. The improvements by the application ofcontext rules are
reflected by the differences between q 1 s to q 1 and q2s to q2.

Both differences, qls-ql and q2s-q2, are significant
according to the Wilcoxon  nonparametric test for 2 de-

52 Neuropsychobiology 1998;37:49-58 Baumgart-Schmitt/Herrmann/Eilers



Table 3. Matrix of the results received
by SASCIA in context with the expert
opinions

Expert SASCIA

Sl s2 s3 S4 REM AWAKE MOV

Sl 10 3 0 0 7 1 0
s2 6 160 21 2 9 0 0
s3 0 5 21 17 0 0 0
S4 0 1 I 32 0 0 0
REM 2 2 0 0 91 0 0
AWARE 12 1 0 1 3 8 1
MOV 1 1 0 0 1 1 8

The time ranges measured in minutes that conform with the expert are shown in the
diagonal position. The deviant classifications are distributed in the other cells of the matrix.
The automatic classifications averaged on 16 nights are the result of the combined working of
networks and rules. As an example the epochs connected with expert decision for REM are
automatically recognized as REM in 91 min, in 2 min as stage 1 and in 2 min as stage 2.

a pendent samples at the level of 5 % with n= 16. The proof
value is equal to 30 according to table 8 in Clauss and
Ebner [5]. Figure 2 underlines the trend that the context
rules seem to improve especially the strongly represented
sleep stages.

Mean percentages of q 1 and q2 for all correctly classi-
tied epochs of the corresponding nights are shown in
table 3. The values are averaged on all epochs. The results
were gathered with the application of context rules. The
values of qls and q2s are connected with median of the
net outputs of 9 networks. The results with the values qlb
and q2b were received by means of the best nets of anoth-
er subject compared to the nights.

The means, standard deviations, medians and the
semiquartile distances of all criteria are shown at the bot-
tom of table 1. Both differences between q 1 s and q 1 b and
between q2s and q2b are not significant according to the

0
Wilcoxon nonparametric two-sided test for 2 dependent
samples at the error level of 5% with n = 16. The proof
value is equal to 30 according to table 7 in Clauss and
Ebner [5].

Therefore it can be concluded that the median of the
network outputs has the same classification performance
as the best net.

The confounding matrix calculated in minutes is
shown in table 3. Table 4 summarizes the same values in
percentages. The expert opinions are connected with the
rows of both matrices and the columns are referenced to
the results of SASCIA.

Table 5 summarizes the values of the confounding
matrix in percentages, but in opposition to table 4 the esti-
mation of the mean on 16 nights was done by the median.

Performance medians of all nights

71.7
64.3 63.5

q1 q2s
Criteria

Fig. 2. Median of confounding matrix of 16 nights (see table 5).

The expert opinions are connected with the rows of both
matrices and the columns are referenced to the results of
SASCIA. The values of the semiquartile distances are
shown in brackets. The chart of that matrix is shown in
figure 3.

The sleep profile of subject k0010832 is shown by lig-
ure 4. The epochs were scored by the sleep scorer. The
profile is used to compare it with the automatically gener-
ated profile of the same subject in the next figure.

The sleep profile of the night k10832 in tigure 5 was
automatically generated on the basis of the median of the
outputs of 9 nets, which were adapted to the data of 9
subjects. The reclassification performance (ql) is 79.6%,
the correlation coefficient between the two profiles (see
fig. 4, 5) is r = 0.860.

Neural Network Techniques to Analyze
Sleep EEG Data

Neuropsychobiology 1998;37:49-58 53



Fig. 3. Medians (large columns) and
semiquartile distances (small columns) for
ql and q2: The increased values for ql and
q2 result from the additional application of
context rules.

a Table 4. Matrix of the results received by SASCIA in context with the expert opinions

1 oo,o-

QO,O-
h

80,0-70,0- h
60.0 -

50,0- 7,
40,0-

30,0-20,0- p

EXPERT

Expert SASCIA

Sl s2 s3 s4 REM AWAKE MOV

Sl 48.4(f 17.2) 12.1(? 11.2) 1.3 (+ 1.7) 0.2(-+0.2) 34.2 (+ 14.6) 2.5(*2.9) 1.4(k 1.4)
s2 3.2 (+ 2.0) 80.4(+ 10.4) 10.5 (f 9.8) 1.2 (+ 1.7) 4.4 (k 2.5) 0.1 (&O) 0.2(kO)
s3 0.3 (+ 1.0) 10.9 (+ 14.6) 49.1 (k 15.8) 39.3(+22.4) 0.1 (&O) 0.2 (kO.5) 0.2 (kO.5)
s4 0.1 (kO.0) 1.3(k 1.3) 17.4(+ 14.8) 81.0(*16.2) 0.0 (2 0.0) 0.1 (&O) 0.2 (kO.5)
REM 2.3(* 3.5) 2.0 (k 4.7) 0.0 (If: 0.0) 0.0 (f 0.0) 95.2(+8.0) 0.2 (+ 0.2) 0.3 (IfI 0.2)
AWARE 44.7 (k25.9) 3.7(? 7.9) 0.0 (f 0.0) 2.5 (+ 3.5) 11.8(+10.1) 32.5(f27.0) 4.7(k4.1)
MOV 6.0(* 4.2) 10.2(k7.1) 2.0 (Ik 2.2) 0.8 (+ 1.2) S.S(k4.5) 9.3 (k 5.0) 63.2 (+ 15.8)

The percentage of the time ranges which conform with the expert are shown in the diagonal position. The deviant classifications are
distributed in the other cells of the matrix. The automatic classifications averaged on 16 nights are the result of the combined working of
networks and rules. As an example the epochs connected with expert decision for REM are automatically recognized as REM in 95%, in 2% as
stage 1 and in 1 O/o as stage 2. The values of the standard deviations are shown in parentheses.

0 Table 5. Matrix of the results received by SASCIA in context with the expert opinions
-

Expert

Sl
s2
s3
s4
REM
AWAKE
MOV

SASCIA

Sl s2 s3

49.5 (* 10) 9.5(k4.5) 0.0 (5 0.0)
3.0 (k 1.5) 82.0(+4.0) 7.0 (+ 3.5)
0.0 (k 0.0) 11.5(k5.0) 48(*10.5)
0.0 (f 0.0) 0.5 (Ik 0.5) 12.5(+4.5)
l.O(k 1.0) 0.0 (k 0.5) 0.0 (3T 0.0)

40.5 (k 15) 0.0 (k 3.5) 0.0 (Yk 0.0)
4.O(k 2.0) 6.0 (+ 3.0) l.O(k 1.0)

s4 REM

0.0 (+ 0.0)
O.O(kO.5)
33.5(k 12)
85.5 (f5.0)
0.0 (+ 0.0)
0.0 (+ 0.0)
0.0 (+ 0.0)

32.0(* 8.5)
4.0 (+ 1.5)
O.O(k 0.0)
0.0 (k 0.0)
96(+2.0)
7.5 (k 8)
7.5 (2 3.5)

AWAKE

l.o(* 1.5)
0.0 (k 0.0)
0.0 (k 0.0)
0.0 (+ 0.0)
0.0 ( f 0.0)

25.5(*20)
7.5(+ 3.0)

MOV

l.O(k 1.0)
0.0 (III 0.0)
0.0 (f 0.0)
0.0 (zk 0.0)
0.0 (f 0.0)
4.0(+2.5)

65.5tk4.5)

The medians on 16 nights of percentages of epochs which conform with the expert are shown in the diagonal position. The deviant
classifications are distributed in the other cells of the matrix. The automatic classifications averaged on 16 nights are the result of the
combined working of networks and rules. As an example the epochs connected with expert decision for REM are automatically recognized as
REM in 96% and with 1% as stage 1. The values of the semiquartile distances are shown in parentheses.

54 Neuropsychobiology 1998;37:49-58 Baumgart-Schmitt/Herrmann/Eilers
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Fig. 4. Sleep profile of subject kO0 10832. The epochs were scored by the expert. The profile is compared with the
automatically generated profile of the same subject in the next figure.

Fig. 5. Automatically generated sleep profile of the night k10832 on the basis of the median of the outputs of 9
nets, which were adapted to the data of 9 subjects. The reclassification performance (ql) is 79.6%. The correlation
coefficient between this profile and the expert profile of figure 4 is r = 0.860.

Neural Network Techniques to Analyze
Sleep EEC Data
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Fig. 6. Sleep profile of subject k0020923. The epochs were scored by the expert. The profile is compared with the
automatically generated profile of the same subject in figure 7.

Fig. 7. Automatically generated sleep profile of the night k0020923 on the basis of the median of the outputs of 9
nets, which were adapted to the data of 9 subjects. The reclassification performance (ql) is 84.4%. The correlation
coefficient between this profile and the expert profile of figure 6 is r = 0.930.

56 Ncuropsychobiology I998:37:49-58 Baumgart-Schmitt/Herrmann/Eilers



The epochs of the sleep profile in figure 6 of subject
k0020923 were scored by the expert. The profile is used to
compare it with the automatically generated profile of the
same subject in the next figure. The sleep profile of the
night k0020923 in figure 7 was automatically generated
on the basis of the median of the outputs of 9 nets, which
were adapted to the data of 9 subjects. The reclassification
performance (q 1) is 84.4% and the correlation coefficient
between the two profiles (see fig. 6, 7) is r = 0.930. If fig-
ure 7 is compared with figure 7 of the first communica-
tion [2], the total sleep time, SWS and REM latency, stage
1 and especially REM fit better to the expert generated
profile based on RK rules. Only SWS was marginally
overestimated.

The arithmetic mean over the 16 correlation coeffi-
cients between the expert profiles and the automatically
generated profiles by means of the median of the 9 net-
work outputs is 0.864.

9
In using only one network to classify the epochs, the

rithmetic mean of the 16 x 16 correlation coefficients is
lowered to 0.8 19. Each night was classified by the weights
of all other nights and by its own weights.

Discussion

The application of the median of multiple nets is
guided by the main idea that a whole population of neural
networks can solve the task of nonlinear classifying in a
much better way than one single network. We got relative-
ly robust classification results. The average agreement
between SASCIA and the RK scorer may be as low as 76-
84%. However, there are no complete failures so far. Even
if the agreement between SASCIA and the scorer is only in
the high 70ies, there is virtually no major difference in the
sleep profiles as can be seen from figures 4-7. Comparing

ese profiles there should be no misinterpretation of the
physiology of the sleep and the features of the sleep profile
by the SASCIA-generated profiles.

Another possibility to adapt to individual subjects’
profiles would be to perform a prescreening with the first
sleep epochs, and then decide which of the networks
should be applied.

We believe that REM identification should be possible
without analyzing the REM, based on the current theories
about the importance of the REM stage [6]. In the past,
REM staging always has been a problem for the automatic
methods [7]. Using neural networks seems to make it pos-
sible to classify REM more safely without using the eye
movements and the EMG. The fact that we could identify

Neural Network Tcchniqucs to Analyze
Sleep EEC Data

91 min out of the total REM time of 95 (see table 3) is
considered as a breakthrough in automated REM detec-
tion without eye movements and supports our hypothesis
that the EEG alone carries REM-specific information.

The fact that REM still has been substantially overesti-
mated by SASCIA (see table 3) by 20 min (111 min
instead of 9 1) has to be further investigated. It is probable
that wake phases at the end of the night, while people are
still in bed but not any more in REM sleep according to
the RK classification, is detected by the SASCIA system
falsely as REM.

In our feature matrix [3] (table I), we have not taken
any coherence measure as suggested earlier by Waterman
et al. [8]. Our own research suggests that coherence should
be a factor to further improve REM staging, and we are in
the process of systematically analyzing REM for coher-
ence and resonance frequencies.

If indeed our system can be further improved using
only one single EEG lead, then automatic sleep analysis
could be applied with very simple equipment. To store
and analyze the record of only one EEG lead would be
very economical and could include more ambulatory
sleep profiling into sleep research, especially more reliable
prescreening before a patient is admitted to a sleep clinic.
The most important for ambulatory equipment seems to
be to deliver valid data for normal sleep profile versus
disturbed sleep profile, which requires further investiga-
tion in a sleep laboratory.

The average agreement of 7580% between SASCIA
and a scorer according to RK may be regarded as low. How-
ever, we again have to ask the question raised many times
earlier whether RK rules should be the only standard
against which we should validate our SASCIA system [ 111.
It may well be that automated systems such as SASCIA
better represent sleep physiology than RK rules do. This
may be especially true for the 75uV amplitude criteria to
recognize Z-waves as valid for SWS. SASCIA seems to
represent sleep physiology in many cases better than RK
do. This question will be clarified in further investigations
comparing a new one-channel device called QUISI [9] and
within a large EC funded program (SIESTA) [lo] involving
more than a dozen European sleep labs, starting in Septem-
ber 1997, called: ‘A new standard for integrating polygraph-
ic sleep recordings into a comprehensive model of human
sleep and its validation in sleep disorders’ [lo].

We could demonstrate that the application of neuronal
networks applied to parameters of the quantified EEG
delivers remarkable results taking into account that this is
our first approach and that we used only the information
of one single lead and no eye movements. Our suggestions
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